Slot fringing effect on the magnetic characteristics of the electrical machines
نویسندگان
چکیده
Due to the fringing effect, the magnetic flux in the air gap of electrical machines is reduced. This leads to the larger effective air gap length. For this reason, in the design stage of the electrical machines, a larger magnetic flux must be chosen. On the other hand, magnetic loading must be taken smaller than the value corresponding to the real air gap length. Currently, Carter coefficient is applied to compensate the slots effects. This coefficient is calculated with respect to the slots dimensions and air gap length, using Carter formulas and corresponding curves. These curves are taken by solving the two dimensional Laplace equation for voltage, and cannot be accurate (errorless) completely. Nowadays, using the FEM (finite element method) packages of numerical methods, slot effects on the air gap flux distribution are calculated carefully. In this paper using the Ansys package of FE these effects are studied. Using the results of these studies and comparing them with the Carter method, the Carter coefficient is modified.
منابع مشابه
Investigation of unbalanced magnetic force in permanent magnet brushless dc machines with diametrically asymmetric winding
The purpose of this paper is the calculation of Unbalanced Magnetic Force (UMF) in permanent magnet brushless DC (PMBLDC) machines with diametrically asymmetric winding and investigation of UMF variations in the presence of phase advance angle. This paper presents an analytical model of UMF in surface mounted PMBLDC machines that have a fractional ratio of slot number to pole number. This model...
متن کاملA Novel Approach to Design the Dual Rotor Switched Reluctance Motor Based Electric Vehicles
Electric and hybrid electric vehicles are attractive candidates for sustainable transportation due to its higher efficiency and low emission. The critical choice on the electric motors is its capability of motoring and regenerative braking characteristics. Switched reluctance machines are viable candidate as with proper control and extended constant power range operation replacing the multi-gea...
متن کاملAnalytical Modeling of Magnetic Field Distribution in Inner Rotor Brushless Magnet Segmented Surface Inset Permanent Magnet Machines
Brushless permanent magnet surface inset machines are interested in industrial applications due to their high efficiency and power density. Magnet segmentation is a common technique in order to mitigate cogging torque and electromagnetic torque components in these machines. An accurate computation of magnetic vector potential is necessary in order to compute cogging torque, electromagnetic torq...
متن کامل2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines
A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using...
متن کاملFractional Slot Concentrated Windings: A New Method to Manage the Mutual Inductance between Phases in Three-Phase Electrical Machines and Multi-Star Electrical Machines
Mutual inductance is a phenomenon caused by the circulation of the magnetic flux in the core of an electrical machine. It is the result of the effect of the current flowing in one phase on the other phases. In conventional three-phase machines, such an effect has no influence on the electrical behaviour of the device. Although these machines are powered by power inverters, no problem should occ...
متن کامل